skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goulko, Olga"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bell's seminal work showed that no local hidden variable (LHV) model can fully reproduce the quantum correlations of a two-qubit singlet state. His argument and later developments by Clauser et al. effectively rely on gaps between the anticorrelations achievable by classical models and quantum theory for projective measurements along randomly chosen axes separated by a fixed angle. However, the size of these gaps has to date remained unknown. Here we numerically determine the LHV models maximizing anticorrelations for random axes separated by any fixed angle, by mapping the problem onto ground state configurations of fixed-range spin models. We identify angles where this gap is largest and thus best suited for Bell tests. These findings enrich the understanding of Bell non-locality as a physical resource in quantum information theory and quantum cryptography. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  2. Representing real-time data as a sum of complex exponentials provides a compact form that enables both denoising and extrapolation. As a fully data-driven method, the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm is agnostic to the underlying physical equations, making it broadly applicable to various observables and experimental or numerical setups. In this work, we consider applications of the ESPRIT algorithm primarily to extend real-time dynamical data from simulations of quantum systems. We evaluate ESPRIT's performance in the presence of noise and compare it to other extrapolation methods. We demonstrate its ability to extract information from short-time dynamics to reliably predict long-time behavior and determine the minimum time interval required for accurate results. We discuss how this insight can be leveraged in numerical methods that propagate quantum systems in time, and show how ESPRIT can predict infinite-time values of dynamical observables, offering a purely data-driven approach to characterizing quantum phases. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  3. The planar grasshopper problem, originally introduced by Goulko and Kent (Goulko & Kent 2017 Proc. R. Soc. A 473, 20170494), is a striking example of a model with long-range isotropic interactions whose ground states break rotational symmetry. In this paper we analyze and explain the nature of this symmetry breaking with emphasis on the importance of dimensionality. Interestingly, rotational symmetry is recovered in three dimensions for small jumps, which correspond to the nonisotropic cogwheel regime of the two-dimensional problem. We discuss simplified models that reproduce the symmetry properties of the original system in N dimensions. For the full grasshopper model in two dimensions we obtain quantitative predictions for optimal perturbations of the disk. Our analytical results are confirmed by numerical simulations 
    more » « less
  4. A central problem in modern condensed matter physics is the understanding of materials with strong electron correlations. Despite extensive work, the essential physics of many of these systems is not understood and there is very little ability to make predictions in this class of materials. In this manuscript we share our personal views on the major open problems in the field of correlated electron systems. We discuss some possible routes to make progress in this rich and fascinating field. This manuscript is the result of the vigorous discussions and deliberations that took place at Johns Hopkins University during a three-day workshop January 27, 28, and 29, 2020 that brought together six senior scientists and 46 more junior scientists. Our hope, is that the topics we have presented will provide inspiration for others working in this field and motivation for the idea that significant progress can be made on very hard problems if we focus our collective energies. 
    more » « less
    Free, publicly-accessible full text available June 25, 2026